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Abstract

Occupational health and risk management (OHRM) in the South African mining
sector remains a critical national priority, where the life or death outcomes can
be impacted by poor quality-data usage. Big data analytics (BDA) is increasingly
used for hazards predictions and timely decision-making.

The aim of the study: to explore critical data quality factors that influence the
reliability and effectiveness of BDA for decision-making to guide occupational
health practitioners and risk managers within South African mining sector.

The study employed a quantitative survey methodology, informed by the literature
review, to identify key data quality factors of BDA impacting OHRM in the South
African mining sector. Underpinned by Technological, Organizational and
Environmental (TOE) theory and contextual factors within big data quality
dimensions and big data sources. Data was collected from 103 OHRM experts
determined by the population size of 140.

The results reveal the following factors to have influence on data quality for BDA
within SA mining OHRM; Environmental factors with a predictive power of
25.0% (p=0.250) at p=0.014; followed by big data quality dimensions with 24.1%
(6=0.241) at p=0.008; then, technological factors with 15.9% (p=0.159) at
p=0.027; big data sources with 13.2% ($=0.132) at p=0.026; lastly
organisational factors was less significant at p=0.228 with 10.0% ($=0.100).

This study identifies the factors of data quality, highlighting its role in BDA for
decision-making within OHRM. These factors can further be used to provide
guidance for SA mining OHRM decision makers to target critical data quality
improvement areas for enhanced decision making in the sector.

big data analytics, data quality, mining safety, occupational health, risk
management, South Africa.
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Introduction

The mining sector serves as the pillar of the world’s
financial resource; however, minimizing risk-related
issues and negative environmental effects presents a
significant challenge in the industry (Bag et al., 2021).
The mining industry leverages various big data sources
to prevent occupational hazards, and to ensure a secure
working environment (Abd Karim & Sejati, 2021).
These big data sources generates vast amount of data,
according to Ntlhakana et al. (2021), big data has a
radical effect on occupational health and enables the
early identification of high-risk patients through the
integration of big data source technologies (Brouwer &
Rees, 2020). Mining industry professionals make use of
this data to inform decision-making processes and
mitigate the adverse effects of the occupational health
challenges such as occupational hearing loss (Moroe et
al., 2019). Failure to address environmental, social and
governance challenges may negatively impact the
reputation of organisations. Loss of revenue and further
increase the risk of none compliance (van Rensburg et
al., 2019).Therefore, big data analytics (BDA) and data
quality may be of value, as both appear to be drivers of
transformation and improvement in the mining industry
(Bisschoff & Grobbelaar, 2022).

The use of BDA is expanding with increasing
acknowledgement from academia and industry. BDA
refers to the systematic examination and analysis of
large datasets that exceed traditional analytical
capabilities (Hariri et al., 2019), utilizing innovative
techniques for data storage, management, analysis, and
visualization (Vassakis et al., 2018) of massive and
complex datasets, commonly known as Big Data (Kuo
et al., 2014). BDA offers potential significant benefits
for organisational performance in the mining industry.
Furthermore, can enables data driven decision making,
which may lead to improvement of organisation’s
efficiency and profitability (Vassakis et al., 2018).
Additionally, applying BDA within Occupational
Health and Risk Management (OHRM) in the mining
sector may improve effectiveness of the environment
using big data-driven innovations beneficial for
sustainability (Bag et al., 2021).

Despite noticeable BDA potential on OHRM, data
quality remains the main challenge to the accuracy of the
outcomes. Poor data quality appears to be
disadvantaging organisations to fully benefiting from
the value of using BDA (Cai & Zhu, 2015). According
to Vassakis et al. (2018) obtaining the insightful
outcomes from BDA analysis of accurate and reliable
data of is required. As data quality remains essential to
leverage accurate and meaningful decision-making,
which may influence organizational growth (Segooa &
Kalema, 2024) taking into account the conditions of
digitalisation in the economy (Pypenko, 2019; Pypenko
& Melnyk, 2021).

Data Quality is defined as the degree of data usefulness
(Wang et al., 2023), for its intended application and
requirements (Declerck et al., 2024). In the realm of big
data analytics, data quality is critical for identifying
patterns, correlations, and trends within massive
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amounts of data (Feng et al., 2019), in which impacts the
success of the processes that are driven by data, analytics
and decision-making systems (Rangineni et al., 2023).
According to Bisschoff and Grobbelaar (2022), data
quality is critical to obtain accurate insights and protect
companies from making poor decisions as a result of
poor data quality and includes objectively and correctly
describing real situations (Tyleckova & Noskievicova,
2020).

High-quality data is critical in the mining sector due to
the nature of the environment, which involves managing
number of risks, including safety, health, and
environmental sustainability. Hence, in South African
mining sector, sustainable development entails the
investigation for the intersections between the mining
companies’ goals, their business procedures, and the
subsequent effects on the welfare of the community,
safety, and health (Bag et al., 2021). Poor data quality
leads to inaccurate evaluations of occupational health
risks, in which can potentially compromise employees’
safety, increase penalties (Mishra & Mishra, 2023),
erroneous reporting and noncompliance with various
occupational health and safety regulations (Maroun,
2019). In addition, Feng et al. (2022) emphasized the
significance of missed organizational learning
opportunities within the healthcare field, pointing out
concerns related to underreporting, contributing factors,
and quality improvement projects. Organizations
involved in mining can gain a better understanding of
unsafe behaviours and potentially uncover instances of
underreporting that impact the accuracy and reliability
of data related to occupational health and safety in the
mining sector (Kumar & Bhattacharjee, 2023).
Moreover, Luo et al. (2023) emphasized how inadequate
safety technology training and delayed hazard
identification can contribute to underreporting of
accidents, affecting quality of data within the OHRM in
the mining sector.

The aim of the study. To analyse the factors that
influence data quality in big data analytics to improve
decision making within the SA mining sector. By
exploring these factors, the study is intended to address
big data quality challenges as well as their impact in
decision making processes for OHRM within SA mining
organisations.

Materials and Methods

According to Lim et al. (2013) the information services
(IS) theories are considered a foundation of information
systems research study, which provides a design and
guidance on investigating a phenomena. For the
researcher to present unbiased results, the choice of IS
theory framework is derived from the topic of the study,
research objectives and literature review (Chukwuere,
2021).

This study integrated TOE IS theory with big data
quality dimensions and big data sources, as an
underlying theory to expand the existing theoretical
body of knowledge, considering the factors identified by
the researcher while during the review of the literature.



TOE framework is known for its ability to provide a
more comprehensive approach by taking into account
technological, organisational and environmental factors
(Ullah et al, 2021).

Figure 1

Figure 1 presents conceptual model of enhanced data
quality for BDA to improve decision making in SA
mining OHRM.

Conceptual Model of Enhanced Data Quality for Big Data Analytics to Improve Decision Making in South African Mining
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This study employed quantitative methodology relevant participants and aligned with the field of study

following positivist approach to explore big data quality
factors for BDA to improve decision making in the SA
mining industry. Positivist approach is usually
associated with the quantitative research paradigm, in
which the researcher would utilize surveys,
questionnaires, or experimental techniques to extract
and generalize the results (Kivunja & Kuyini, 2017).
The questionnaire was developed and employed as a
data collection tool in this study, to discover patterns and
factors that influence the quality of data in BDA, for the
incidents involving occupational health and safety
(OHS), risk hazards and processes for decision making.
This study used sampling determinants method by
Krejcie and Morgan (1970) to determine the sample size
of the study, which guided that the population of 140,
requires a sample size of 103. The researcher selected
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and research objective to obtain insights and measure
data quality factors identified during the review of the
literature in the OHRM within the mining sector. To
collect data from the sample size of 103 OHRM
participants, the researcher used google forms to create
a questionnaire for seamless administration of the
responses.

This study considered directly impacted stakeholders
from one of the largest gold mine in South Africa as a
sample population, specifically selected subject matter
experts (SMEs) within the OHRM disciplines such as
occupational health, occupational hygiene, safety
management, radiation and risk management. As they
rely on BDA for decision making and data quality is
critical for their prediction. The selection criteria is
presented on Table 1.
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Table 1
Selection Criteria

Sample size for

P Questionnaire
Occupational Safety 21
Occupational Hygiene 11
Radiation 10
Occupational Health 41
Risk Management 20
Total 103

According to Albers (2017), in order to reach a
conclusion in a quantitative research study, a numerical
data must be gathered and analysed. Data analysis
reveals the linkage of the study’s contextual setting,
main trends and patterns. In this study statistical tests
and tools such as Statistical Package for the Social
Sciences (SPSS) version 28.0.0.0 from IBM was used
for data analysis to obtain conclusions from the
collected data. According to Bauer et al. (2021) most of
the quantitative studies consists of the basic statistical
analytic methods, such as correlation regressions,
descriptive statistics, and analysis with or without
probabilities, measurements of statistical significance
and interactions. The results overall reliability was
conducted for the study as presented in Table 2.

Table 3
Frequencies of Participants’ Demographics

Table 2
Overall Reliability Statistics
4 Cronbach’s Alpha
C“::b::h . Based on N of Items
& Standardized Items
0.966 0.966 86

The overall reliability statistics based on the Cronbach’s
alpha coefficient was 0.966 measured on 86 items. This
value is acceptable (Taber, 2017) as it is above the
minimum value of 0.7.

Results

The study considered South African Mining
Occupational Health and Risk Management experts,
which included the total responses of 104 participants.
Thus, 1 chief safety officer, 9 group technology (GT)
systems specialists, 15 occupational health managers, 22
occupational  health  nursing  practitioners, 1
occupational hygiene manager, 12 occupational
hygienists, 13 occupational medical practitioners, 1
radiation manager, 8 radiation protection officers, 20
risk management specialists and 2 safety officers as
shown in Table 3.

: Frequency
Naibive Person Percent Cumulative percent
Female 56 53.8 53.8
Gender Male 48 46.2 100.0
Total 104 100.0 -
21-30 years 2 1.9 1.9
21-40 years 28 269 28.8
Age group 41-50 years 42 404 69.9
51 years and above 32 30.8 100.0
Total 104 100.0 -
Matric 10 9.6 9.6
National Diploma 32 30.8 404
Hiication Bachelor Degree 55 52.9 93.3
Master Degree 6 5.8 99.1
Doctoral Degree (PhD) 1 1.0 100.0
Total 104 100.0 -
Free State 32, 30.8 30.8
Gauteng 49 47.1 719
Location North West 22 212 99.0
South Africa 1 1.0 100.0
Total 104 100.0 =
Chief Safety Officer 1 1.0 1.0
GT Systems Specialist
(SHERQ/HRM) ? il 26
Occupational Health 15 14.4 24.0
Manager
Sl e 22 212 452
Nursing Practitioner
Occupational Hygiene 1 1.0 462
Manager
Position Occupational Hygienist 12 11.5 ST
Occupz_njonal Medical 13 125 702
Practitioner
Radiation Manager 1 1.0 T2
Radiation Protection
Officer 8 7.7 78.8
Fiak Masagerian 20 19.2 98.1
Specialist
Safety Officer 2 1.9 100.0
Total 104 100.0 —
Yes 5 4.8 4.8
BDA Utility No 99 95.2 100.0
Total 104 100.0 -

39



Furthermore, Table 3 presents that OHRM discipline mining organisation only operates in 3 provinces in

consists more of employees above 31 years of age than South Africa, which is Free State, Gauteng and North
21-30 years of age; this result is valid as mining industry West. On BDA utilization, Table 3 indicates
retains its employees due to level of experience mostly demonstrates that only 5 participants of the total of 104
in occupational safety and risk. Moreover, the table participants which is 4.8% are not using big data
shows that 9.6% of participants had matric certificates analytics tools in their daily duties. As a result, 95.2% of
as their highest qualification, 30.8% had national the participants utilize big data analytics tools for
diploma, 52.9% had Bachelor’s degree, 5.8% had decision-making.

Master’s degree and 1.0% of the participants had PhD, Regression Statistical Analysis

the findings indicates that most participants hold This study considered regression statistical analysis to
Bachelor’s degree with 55.0%. Therefore, this study is determine the relationship between enhancing data
valid as OHRM specialists are required to have attended quality for BDA analytics as an independent variable
a formal training and education. Table 3 further and number of dependent variables thus, Technological,
demonstrates locations, and only 3 provinces out of 9 in Environmental, Organisational, Big Data Quality
South Africa, and South Africa as country, the dimensions and Big Data Sources. Linear regression
assumption is that participant might be working in statistical analysis is an analytical method used to
multiple provinces, according to the results Gauteng had determine the influence that an independent variables
the highest responses at 47.1%, followed by Free State has on the dependent variable (Wardhani et al., 2021).
with 30.8% and the lowest being North West with The results of the statistical analysis are presented in
22.1%. Therefore, this study is valid as the sampled Table 4.

Table 4

Model Summary

Adjusted R Std. Error of Chmps Stttics

Square  the Estimate RSauare pop o0 e gp  Sig F Change
Change

1 0.779*  0.608 0.587 0.410 0.608 30.337 5 98 0.000

Model R R Square

Note. a. Predictors: (Constant), Big Data Sources, Technological, Organisational, Data Quality and Environmental;
b. Dependent Variable: Enhancing Data Quality for BDA.

According to Table 4, the correlation value of R Square making in South African Mining Sector OHRM is
is 60.8% (0.608), which indicates the contribution 77.9%.

between the individual variables towards dependent Furthermore, the sig. F change value of 0.00, which is
variable “Enhancing data quality in BDA for effective below 0.05, indicates that the prediction of the identified
decision-making”. While the correlation value of 0.779 big data quality factors for BDA is significant and can
indicates, the overall contribution of individual be considered to improve decision making in SA mining
independent factors towards the conceptual model to sector. The regression coefficients are shown in Table 5.

enhancing data quality in BDA for improved decision-

Table 5
Regression Coefficients

Unstandardized Standardized

. . Collinearity statistics
coefficients coefficients ty

Model Std. t Sig.

B e Beta Tolerance VIF
(Constant) 0.413 0.286 . - 1.441 0.153 - -
TechFactor 0.159 0.070 0.171 2.252 0.027 0.692 1.445
OrgFactor 0.100 0.093 0.094 1.068 0.288 0.520 1:923
EnvFactor 0.250 0.101 0.278 2491 0014 0.322 3.109
DataQualityFac01 0.241 0.089 0.270 2.708 0.008 0.402 2.488
BigDataSourcesfac01 0.132 0.058 0.170 2.266 0.026 0.714 1.400

Note. TechFactor — technological factors; OrgFactor — organisational factors; EnvFactor — environmental factors;
DataQualityFacO1 — big data quality dimensions; BigDataSourcesfacOl — big data sources.

Based on the regression coefficients on Table 5, the p=0.014 which is the most influential; followed by big
findings reveal that the factors that influence data quality data quality dimensions with 24.1% ($=0.241) at
for BDA within SA mining OHRM are; Environmental p=0.008; then, technological factors with a predictive
factors with a predictive power of 25.0% ($=0.250) at power of 15.9% (B=0.159) with significance level of
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p=0.027; big data sources with 13.2% ($=0.132) at
significance level of p=0.026; lastly organisational
factors was found to be less significant at p=0.228 with

The results indicates that only four of the hypotheses
were supported after quantitative data analysis: H1, H3,
H4 and HS5. While one hypothesis, which is H2 —

predictive power of 10.0% (p=0.100).
Table 6 presents the results for the tested set hypotheses
of the study.

organisational factors, was rejected.

Table 6
Hypotheses Results

Hypothesis Results
H1 —Technologies, such as OHRM systems and Underreporting have influence
on enhanced data quality for BDA to improve decision-making in South
African mining OHRM

H2 — Organisational factors, which includes leadership, lack of training and
resources, lack of Health and Safety awareness, poor OHS Monitoring,
inaccurate Reliance influence enhanced data quality for BDA for effective
decision-making in South African mining OHRM

H3 — Environment factors, which includes external governance, legislation and
compliance influence the enhancement of data quality for BDA to improve
decision-making in South African mining OHRM

H4 — Big data sources, such as Occupational safety systems EHMS, GIS,
advanced monitoring sensors, remote sensing technology, have influence on
enhancing data quality for BDA within South African mining OHRM to
improve decision-making

H5 — Big data quality dimensions, which consist of data availability,
cleanliness, imbalanced data, reliability, incompleteness and quality assurance
have influence on data quality enhancement for BDA to improve decision-

Sig.

P=0.027<0.05  Accepted

P=0.288>0.05  Rejected

P=0.014<0.05  Accepted

P=0.026<0.05  Accepted

P=0.008<0.05  Accepted

making in the South African mining OHRM to improve decision-making

Discussion

The aim of this study was to identify critical factors of
data quality in BDA to improve decision making within
OHRM for mining sector. In this section, the researcher
discusses the key data quality factors identified during
literature review, which informed hypotheses, and further
tested in this study.

Big Data Quality Technological Factors

Table 6 shows that H1 (P=0.027<0.05) was accepted,
suggesting that Technological factors such as reporting
systems, OHRM systems and underreporting have
significant influence on enhancing data quality for BDA
within South African mining OHRM to improve
decision-making. These results are supported by the
study conducted by Famure et al. (2019) that Electronic
Health Record (EHR) systems have contributed to the
emergence of BDA in healthcare by offering chances for
quality improvements, which are crucial components for
enhancing data quality in occupational health and safety.
Consistently, the study conducted by Yang et al. (2021)
underscores the importance of robust reporting systems
and information technology in identifying causes of
safety issues and accidents within the coal mine industry,
emphasizing the role of technological advancements in
enhancing safety practices and data quality within the
industry. Moreover, the study by Zhou et al. (2018)
further supports the outcomes highlighting the critical
importance of robust OHS systems and risk management
within the mining sector. Additionally, the research
highlights the significance of OHS management practices
in fostering organizational safety culture, risk
management, and incident prevention, by managing risks
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and implementing safety measures effectively, mining
organizations can enhance data quality, reduce negative
occurrences, and cultivate a safe working environment
for employees (Stojanovi¢ et al., 2024).

Big Data Quality Organisational Factors

Table 6 shows H2 (P=0.288>0.05), was rejected which
indicates that organisational factors such as leadership,
lack of training, resources, lack of awareness within
Health and Safety, poor monitoring of OHS, and
inaccurate Reliance do not significantly have influence
on data quality enhancement within BDA for effective
decision-making in South African mining OHRM.
According to Sarstedt and Mooi (2018), the overall
parameter that it is greater than 0.05 is considered to be
not significant.

These organisational factors were identified in
accordance to the literature conducted by Johnson et al.
(2021) who revealed that data quality improvement is a
top management function through an empirical
investigation of BDA capabilities implementation.
Whilst, Haas (2020) established that leadership has a
critical role in shaping safety culture and impacting
health and risk management processes at the operational
level, on the study highlighting the need for developing
effective decision-making models in occupational health
and safety. Moreover, research by Hermanus (2007)
identified resource limitations in small mining companies
contribute significantly to health and risk management
concerns.

Furthermore, Franke and Hiebl (2022) acknowledged the
need for skilled data analytics resources to effectively
examine big data and derive meaningful insights for



informed decision-making
Alnefaie et al. (2022) identified the vital role played by
data specialists play in processing big data to facilitate
decision support, and identifying data sources and
required competencies can significantly influence data
quality in mining. In addition, According to Nazari et al.

in mining. In support,

(2020), training and knowledge development are
essential to overcome BDA challenges and leverage its
benefits effectively. Similarly, Muhunzi et al. (2023)
found that training healthcare professionals to leverage
BDA effectively may improve patient outcomes and
reduce healthcare costs. Moreover, Andrews et al. (2019)
supported that stuff training along with data quality
initiatives are critical for improving healthcare delivery
processes, and for accurate process mining outcomes.
Big Data Quality Environmental Factors

The study accepted H3 (P=0.014<0.05) — environmental
factors, which include external governance, legislation
and compliance are significantly influencing the
enhancement of data quality for BDA within the South
African mining OHRM to improve decision-making, as
shown in Table 6. These results are supported by Muthelo
et al. (2022), who focused on investigating occupational
health and safety practices and compliance within South
African mining sector, specifically in the province of
Limpopo, utilizing principal component analysis. By
identifying key attributes associated with compliance
with health and safety standards, this study indirectly
underscores the importance of regulatory adherence in
upholding data quality within the OHS context of the
mining sector (Muthelo et al., 2022). Moreover, Donkor
et al. (2023) further emphasized the significance of
complying with safety regulations to mitigate risks and
safeguard workers’ well-being, which can ultimately
impact data quality by ensuring precise reporting and
monitoring of occupational health and safety metrics.
Moreover, Chikosi and Mutezo (2023) identified that
occupational health and safety risks are frequently known
challenges within the mining industry, which includes the
inefficient organisational governance systems. In
addition, it is important to implement effective data
governance to manage and control data use, enhancing
data quality, availability, and integrity within
organizations (Aseeri & Kang, 2022). South African
mining sector is a very well regulated and governed
entity more especially within the areas of occupational
health and risk management. According to Rikhotso et al.
(2022), each regulatory compliance is associated with the
cost, which corresponds to the requirements such as
medical examination, risk assessment and reassessment,
workplace inspections, training programs, workplace
control, PPEs and labelling, disposal, offenses and
penalties, and keeping records.

Big Data Quality Sources

Table 6 it shows that H4 (P=0.026<0.05) was accepted
which indicates that big data sources such as
occupational safety systems EHMS, GIS, advanced
monitoring sensors, remote sensing technology, have
influence on data quality enhancement in BDA within the
South African mining OHRM for effective decision-
making. These results are consistent with the study
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conducted by Abd Karim and Sejati (2021), indicating
that the mining industry leverages various big data
sources such as OHRM systems to prevent occupational
hazards, and to ensure a secure working environment
(Andri Estining Sejati, 2021). Furthermore, the study
conducted by Montisci et al. (2022) identified the variety
of big data sources, such as systems for injury-reported
incidents, clinical examinations, and electronic health
records. Moreover, mining industries integrated multiple
big data sources such as remote sensing technologies,
geographical information systems (GIS) and machine
learning to enhance safety and risk management
decision-making (Musiatek & Maksymowicz, 2024; Li et
al., 2021). Additionally, according to Ntlhakana et al.
(2021) mining industries are using electronic health
management systems to maintain employee’s records and
to proactively monitor occupational health diseases,
which includes hearing loss and respiratory conditions in
the mining environment.

Big Data Quality Dimensions

As presented in Table 6, this study accepted the
significance of H5 (P=0.008<0.05) — big data quality
dimensions, which consist of data availability,
cleanliness, imbalanced data, reliability, incompleteness
and quality assurance have influence in enhancing data
quality for BDA in the South African mining OHRM to
improve decision-making. This outcome was supported
by Arikekpar and Bestman (2023), who identified
accuracy, completeness and timeliness as main
components of data quality. In addition, Abburi (2024)
identified consistency and accessibility as key
dimensions to ensure that data is fit for purpose.
Furthermore, findings by Cresswell et al. (2024) further
identified features such relevance and reliability as
relatively defined with major data quality components
such accuracy, timeliness and representativeness.
According to Luo et al. (2023) there are persistent data
availability issues impacting the implementation of
appropriate risk management strategies for effective
decision-making within responsible customs
departments guided by risk assessment outcomes. In
addition, Hermanus (2007) identified the reliability issue
in occupational health data as a challenge where there is
a lack of reporting systems and criteria that are well-
established such as within developing countries which
includes South Africa (Gheorghe et al., 2022) further
supported the outcomes through comparison of the
inconsistent number of loss-of-life cases and incidents as
evidence in the assessment of data quality for
underreporting within occupational health and safety.

Conclusions

This paper has presented and explored the critical data
quality factors that impact decision making within the
mining OHRM. The identified factors been technologial,
environmental, big data quality dimensions and big data
sources. These findings suggest that SA mining industry
is well regulated by environmental factors such as
external governance and compliance. Therefore, there is
a full reliance on big data sources to capture data and
support effective decision-making within OHRM,



despite persistent data quality challenges. Furthermore,
this study imparts big data quality dimensions and
sources as crucial factors in BDA for effective decision-

making in South African mining sector, Occupational
Health and Risk Management. This study identifies that
technological factors that hinder high quality data usage
in the South African mining sector includes reporting
systems, OHRM Systems and unnderreporting that is
caused by lack of integrations within the systems to be
influencing data quality for BDA. However, there is a
need to further analyse this factors individually following
a qualitative method to gather indepht insights and
investigate the level of signficance for the organisational
factors, as it was found not sufficient and that led the
hypothesis H2 to be rejected.
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